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A Numerical Technique for SAW Diffraction
Simulation

DAVID PENUNURI

Abstract—An efficient numerical technique is presented for simulating
the effect of diffraction on the performance of surface acoustic wave
(SAW) devices. A computer code based on this technique accurately
predicts the performance of several “practical” bandpass filters fabricated
on ST-cut quartz. Since the algorithm is fast, an iterative design procedure
which minimizes the frequency sidelobes in the presence of diffraction is
now practical.

I. INTRODUCTION

VEN AS the specifications for SAW devices become

more exacting, diffraction effects continue to plague
device design, particularly low sidelobe narrow bandwidth
filters. Diffraction begins to have deleterious effects as the
specified sidelobe suppression level surpasses 40 dB in a
single filter device and is almost exclusively the source of
error at the 50-dB sidelobe level on ST-cut quartz.

Several approaches have been used to eliminate, or at
least reduce, diffraction effects. The discovery of mini-
mum diffraction cuts on bismuth germanium oxide (BGO)
and lithium tantalate (LiTaOj;) [1], [2] has resulted in
perhaps the best “simple” bandpass filters, in the sense
that the experimental and theoretical (based on transver-
sal filter calculations) frequency responses are very close
[3]. By “simple” is meant a device consisting of one
apodized transducer and one unapodized transducer. Un-
fortunately, these substrate materials are neither tempera-
ture compensated nor inexpensive.

Another approach has been to avoid apodization in
filter design, instead, by making use of finger withdrawal
to achieve spectral weighting [4]. This technique avoids
very narrow finger overlaps which tend to be dominated
by end effects [5], and are subject to severe diffraction
errors. The disadvantage is that the transducers tend to
have many more finger pairs than those of conventionally
apodized transducers of the same fractional bandwidth.
Finally, these devices are ultimately subject to substantial
diffraction effects because, since the transducers are long
and substrate size is constrained, it is difficult to design
such transducers that are entirely within the near field or
far field.

The last approach has been to retain a “simple” filter
configuration, but correct the time sampling to com-
pensate for diffraction effects. Because of current photo-
lithographic constraints, it is generally not possible to
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accurately correct for phase errors, i.e., adjust the relative
finger pair positions with sufficient resolution. Conse-
quently, only amplitude correction has been investigated
in depth, and only to demonstrate a 40-dB sidelobe level
[6]. The disadvantages of this technique are that: 1) the
compensation can be done exactly at one frequency only,
e.g., the center frequency of the filter, because the diffrac-
tion pattern is in general a strong function of frequency,
thus frequency sidelobes are not exactly corrected; 2) the
diffraction phase errors (deviation from plane wave phase)
remain, and can cause significant departure from the ideal
response; and 3) after compensation for amplitude, it is
extremely expensive to compute the response of a practi-
cal filter (fractional bandwidth less than a few percent)
under the influence of diffraction in order to determine
the effect of phase error. Thus an efficient numerical
technique is required for the computation of a filter re-
sponse, taking into account the complete diffraction prob-
lem. Then it becomes possible to analyze a filter design
which has been derived by using the compensation tech-
niques available, for example, or optimize an initial design
by adjusting the apodization function and the center-to-
center spacing of the transducers. With such a numerical
algorithm, it becomes feasible to systematically adjust
each finger overlap in order to maximize sidelobe suppres-
sion for a given transducer aperture and center-to-center
spacing.

In this paper, such a numerical technique is presented
which, under the conditions that the interdigital trans-
ducer can be modeled as an ideal transversal filter (condi-
tions which are readily approached using ST-cut quartz
and double electrode transducers) and that the SAW wave
vector surface is parabolic (an assumption that is accurate
for most substrates), permits the fast computation of the
frequency response. No attempt is made to model any of
the electromechanical or external circuit effects which are
present in actual devices. In Section II the technique is
derived, and in Section III an analysis of several experi-
mental devices is presented.

II. DirrFrACTION FORMALISM

Following the formalism established by Szabo and
Slobodnik [7], we consider the response of a single an-
tenna in the diffraction field due to a single line source on
a half space. The aperture of the source is normalized to
unity and only those antennas of aperture less than or
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Fig. 1. Coordinate system for diffraction problem.

equal to unity are considered, as seen in Fig. 1. Note that
the vertical axis is in units of aperture and the horizontal
axis is in units of wavelength. The source is assumed to
consist of a constant amplitude distribution. Then the
amplitude u(L,y) at any point (L,y),L >0,|y|<1/2, rela-
tive to a plane wave, is given by

Re u(L.y)=Ci(6) - Ci(¥) (D)
Im u(L,y)=Si(y)~Si(6) @)
where
(r+1/2)" 42
ST L ©
(r=1/20 42
TTUle L ®

v is the slope of the power flow angle, 4 is the actual
maximum aperture in wavelengths, and L is the source-
to-antenna separation in wavelengths. Re and Im signify
the real and imaginary parts, respectively, of a complex
number. The functions Ci(x) and Si(x) are the Fresnel
integrals usually defined as

N x cos (1)

Ci(x)= - j(; 7 at )
N xsin (£)

Six)= V2r Yo Vi ©)

Then the total response of an antenna of width 2Y
centered on the beam axis at L is U(L, Y) where

Y

U(LY)= [ u(Ly)d (7)

which can be written as

e Ci(?)
Re U(L,Y)=afXD i (8)
_ 0 Si(r)
ImU(L,Y)= a\I’ 7 dt 9)
where
Y+1/2)\?

o=( Y ) (10)
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Fig. 2. “Simple” filter configuration.

\P=(Y—a1/2)2 .
a=(|—1—“;-7-11—4’-“-2-)1/2. (12)

In order to facilitate the numerical computation, two
new functions are defined as

Cii(x)= [ (3(;) dt (13)
Sii(x) = fo x_s% dt (14)

which, for brevity, we call the second Fresnel integrals.
Then the total response at the antenna is rewritten

1

~ Re U(L,Y)=Cii(8) - Cii(¥) (15)
% Im U(L, Y)=Sii(¥)— Sii(9). (16)

These expressions can be further simplified so that the
responses of the many finger pair filters can be written
compactly. We define

Fii(x) = Cii(x) + Sii( x) (17)
and using the fact that
Cii( — x) =~ Cii(x) (18)
and
Sii( — x) =Sii(x) (19
we write the total response as
—i—U(L, Y)=Eii( — ¥) — Eii(— ). (20)

We assume that each finger pair of a SAW transducer is
an independent line source. Then the response of a “sim-
ple” filter consisting of N uniform aperture sources and M
variable aperture antennas as in Fig. 2 can be written as

N M
U= 3 n 3, “nm°m(Eii(— *nm)— Eii( — ®nm))e > nm

) 1)

m=1

where
Ym+1/2\?
@nm=(m_/)

o

nm

22)
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TABLE 1
COMPARISON OF NUMBER OF OPERATIONS REQUIRED TO COMPUTE
FRESNEL INTEGRAL AND SECOND FRESNEL INTEGRAL
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TABLE 11
BaNDPASS FILTER SPECIFICATIONS

Center , Center-To-

Function sin(x) cos(x) X + v Filter Fr?ﬁ'lﬁir)]cy Max.é\g?rture spaE%:gebo) N M
Fresnel Int. ! ! 22 2 ! #1 65.8 a 330.0 % 160
Second Fresnel # 28.2 30 330.0 64 100

Int. 1 1 43 45 1 +3 65.8 90 291.0 2 120
4 121.3 50 372.7 65 192
‘I’nm=(3’—m;l/3)2 (23) o e C
“nm proximation of about three significant digits in the
quadrature along the aperture, we must have 20< P<50.
N 1+y Lyy 2 4 Thus (21) is a fast computational algorithm for computing
M=l pT% ) (24) the filter response in the presence of diffraction effects.

N and M are the number of finger pairs in the uniform
and apodized aperture transducers, respectively, and n
and m are the signs (+ or —) of the nth and mth finger
pairs of the uniform and apodized transducers, respec-
tively,

N-M
2
L, is the center-to-center spacing between transducers in
wavelengths at the fundamental frequency, 4, is the aper-
ture in wavelengths at the fundamental frequency, and
p=f/f, where f is the frequency and f is the fundamen-

tal frequency.

It is shown in the Appendix that Cii(x) and Sii(x), or
equivalently, FEii(x), can be computed simultaneously
using polynomial approximations. By comparison, a
“brute force” computation [8] would require that each
finger pair of the apodized transducer be divided into a
large number of small sections. The field at the center of
each section would be computed and all such contribu-
tions would be summed to yield the response of a finger
pair. The fact that the fields must be evaluated at many
points, e.g., P, along the aperture of a finger pair, implies
that the Fresnel integrals must be computed P times.
Using the algorithm proposed in this paper, the second
Fresnel integrals must be computed only once for the
response of the finger pair in question. Thus the relative
advantage of the new method is obvious if the number of
similar operations required to compute the Fresnel in-
tegrals and the second Fresnel integrals are compared as
in Table I. The algorithms are seen to be quite similar in
terms of computational effort. Based on reasonable esti-
mates of the relative time required to perform the various
operations and compute the sine, cosine, and square-root
functions, a single evaluation of the second Fresnel in-
tegral algorithm requires at most 50-percent more com-
putation than a single evaluation of the Fresnel integral
algorithm. Thus it is concluded that the new method is
more efficient by essentially a factor of P/1.5 because the
numerical quadrature for each finger pair is eliminated.
This savings is significant since, for a reasonable ap-

HI.

Four bandpass filters were fabricated on ST-cut quartz
with the specifications seen in Table II. The table shows
the center frequency at the fundamental, the maximum
aperture in fundamental wavelengths, the center-to-center
spacing of the transducers, and the number of finger pairs
in each transducer. All filters consisted of interdigital
transducers with double electrodes of aluminum metalliza-
tion 1000 A thick. The apodized transducers contained
dummy electrodes starting two wavelengths from the end
of each active electrode. All frequency response measure-
ments were made in a 50-£ system with no matching
circuits of any kind. The transducer apodization for each
filter was based on a simple summation of plane waves or
discrete Fourier transform analysis with no modification.
For the purposes of this paper, filters 1 and 3 were studied
at their fundamental frequency only. Filters 2 and 4 were
studied both at the fundamental and at the third
harmonic. The table shows that these devices are typical
of IF filters which might be encountered in practical
applications, with 100-200 finger pairs in the apodized
transducer and fractional bandwidths in the range 0.5-5
percent.

Figs. 3-8 show the frequency response for each filter
which was expected on the basis of a plane wave analysis
(solid line), the experimental response (dashed line), and
the calculated response, including diffraction using the
algorithm described above with y=0.378 (open squares).
The figures show only the high frequency side of the
bandpass since the low frequency side is similar. Many
more points were computed than are indicated by the
number of open squares on each figure. The experimental
response is considerably degraded from the ideal response
for all filters. The sidelobes are higher by as much as 30
dB and are “smeared” together by diffraction. Further-
more, in all cases except for filter 2 at the fundamental,
the experimental response was accurately predicted
(within 2 dB) solely by including the effect of diffraction.
The uniform transducer for filter 2 contained sections of
phase-reversed finger pairs. As has been discussed by
Smith {9] such devices tend to exhibit frequency responses

COMPARISON OF THEORY AND EXPERIMENT
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Fig. 3. Frequency response of filter 1, based on summation of plane
waves (solid line), including diffraction using new technique (open
squares) and experiment (dashed line).
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Fig. 4. Frequency response of filter 2 at the fundamental.
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Fig. 5. Frequency response of filter 2 at the third harmonic.

which are skewed relative to the center frequency. This
effect was observed for filter 2 and resulted in as much as
a 7-dB deviation between the experimental response and
that predicted using the diffraction analysis, although
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Fig. 6. Frequency response of filter 3.
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Fig. 7. Frequency response of filter 4 at the fundamental.
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Fig. 8. Frequency response of filter 4 at the third harmonic.

there was qualitative agreement. When the experimenial
response was averaged about center frequency in order to
eliminate the bandpass skewing, the disagreement was
reduced to less than 2 dB.
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IV. CoONCLUSION

A numerical technique was presented which permits the
fast computation of the frequency response of SAW de-
vices under the assumption that an interdigital transducer
can be modeled as an ideal transversal filter and that the
diffraction is parabolic. The technique reduces the com-
putational effort by a large factor (20-50) relative to a
typical “brute force” method.

The numerical code induced by the algorithm was used
to accurately predict the frequency response of several
bandpass filters. The filters were “practical” in the sense
that the transducers consisted of a large number of finger
pairs (100-200). The experimental and theoretical
frequency responses were typically within 2 dB. These
results illustrate the fact that the major source of error on
ST-quartz is diffraction.

Finally, we note that since the new method is very
efficient, a true optimizing design procedure is now practi-
cal. It is now possible to analyze an initial design very
quickly, systematically modify the finger overlaps, and
reanalyze. Thus, as an example, it should be possible to
iteratively search for a maximum in the sidelobe suppres-
sion level.

V. APPENDIX

Computation of Eii(x)

The numerical evaluation of Eii(x) as defined in (13)
and (14) is based on a polynomial approximation for the
Fresnel integrals, Ci(x) and Si(x) [10]. By substituting
these approximations into the integrand of (13) and (14),
it becomes possible to evaluate the integrals exactly. This
procedure leads to a polynomial approximation for Cii(x)
and Sii(x). The numerical approximation of the Fresnel
integrals in [10] is presented for two ranges of the argu-
ment, |x|<4 and |x|>4. Therefore, the evaluation of
Cii(x) and Sii(x) is considered separately over similar
ranges except that only x >0 need be considered.

In the range 0< x <4, the Fresnel integrals are ap-
proximated by

6
Ci(x)=Vx 3 c,x*

(A1)
m=0
and
5
Si(x)=Vx 3, d,x>*! (A2)
m=0
where the coefficients ¢,, and d,, are tabulated in [9].
Therefore
6
Cii(x)= D, c,x¥+! (A3)
m=0
and
5
Sii(x)= >, d,x*"*? (A4)

m=0

where ¢, =¢,,/@m+1) and d,,=d,,/(2m+2). The new
coefficients c;, and d,, appear in Table III.
In the range x>4. we write
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TABLE III
CoErFICIENTS OF Cii(x) AND Sii(x) FOR THE RANGE 0< x <4;
PARENTHESIS CONTAIN BASE 10 EXPONENT

m m dn

0 7.9788455 (~1) 1.3298075 (-1)
1 -2.6596135 (-2) ~4.7492775 (-3)
2 7.3877172 (-4) 1.0072562 (~4)
3 -1.2174946 (-5) -1.3157316 (~6)
4 1.2894760 (-7) 1.1225331 (-8)
5 ~9.2188446 (-10) 5.5647873 (-11)
6 3.9229499 (-12) 0

Cii(x) =Cii(4) + f (t)

and

Sii(x) = Sii(4) + f =810 4
4

The first term of the RHS for both functions is ob-
tained by evaluating the approximations obtained above
for 0< x<4. In order to evaluate the remaining integral
we make use of the approximations

Ci(x) = -;- + —2—- {cos (x) P (x) +sin(x)Q(x)} (A7)

(A6)

Si(x)=—;— —-\/—_—_——{sm(x)P(x) cos(x)Q(x)} (A8)

with
8 47p
P(x)= 3 —& (A9)
m=0
and
7 4™
0= — (A10)
m=0

The coefficients a,, and b,, are tabulated in [10]. Sub-
stituting (A7)-(A10) into (AS) and (A6) and performing
the integration yields

Cii(x)=Cii(4) + Vx -2

1 () —

+2 i 4"'bm{ +1(4)}
m=0

+2 é 4mam{Sm+1(x)'—Sm+l(4)} (All)

m=0

with a similar result for Sii(x), where we have defined

C. (x)= fxcos(t)

(A12)

and

S, (x)= fxsm(t)

It can be shown via integration by parts that the functions
C,.(x) and S, (x) satisfy the recursive relations

(A13)

cos(x)  Sp

m+1(3€)=—W~ m

(A14)
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and
sin(x) C,(x)
Spa1(¥)=——7 M (A15)
for m > 1. The starting functions are
xcos(?
Cy(x)= f t( ) a2 Ci(x) (A16)
and
xsin(¢) L, .
S,(x)= f —— di £ 5i(x) (A17)
o0

which are the well-known cosine and sine integrals. Alge-
braic manipulation of the expression for Cii(x) in (All)
and the similar result for Sii(x) yields the simplified ex-
pressions

8
Cii(x)=Co+ Vx + 2 {5,Cps1(x)+ S s1()}
m=0

(A18)
and

8
Sii(x)=So+ Vx + X {5,8,+1(x) 4, Cpii(x)}

m=0
(A19)
where
a,,=2(4"a,,), m=0,1,---,7
a;=0
and
b, =2(4"b,,), m=0,1,---,8.

C, and S, are constants.

In order to speed up the algorithm defined by
(A14)-(A19), we eliminate the recursive computation in
(A14) and (A15) by noting that we can write

Cm (X) = CmSl(x)+ Dmcl(x)
8 ¢ 8 d
+sin(x) X —ﬂkk-+cos(x) S (A20)
k=1 X i1 x*
Sm(x)=AmSl(x)+BmCl(x)
: 8 Ak 8 bmk
+sin(x) 3 —= +cos(x) > — (A2l)
k=‘ X k=1 X
where A,,, B, Cps D> Gpics > € and d,,, are con-
stants that are readily determined from (A14) and (Al5).

Substitution of (A20) and (A21) into (A18) and (A19) and
collecting the sums yields the final result

Cii(x) = Cy+ Vx — PyS,(x)+ QyC;(x)
—sin{x) % % +cos(x) i L: (A22)
k=1X k=1X
Sii(x)=So+ Vx + QpS;(x) + PyC,(x)

8 T, 8 [
+sin(x) > ——E+cos(x) > ——% (A23)
k=1X k=1X
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TABLE IV
COEFFICIENTS OF Cii(x) AND Sii(x) FOR THE RANGE x >4;
PARENTHESIS CONTAIN BASE 10 EXPONENT

U T

=

k k

1 -1.8544377(-1% 6.8450242 2-1;
2 -4,850367 (=1 -2.0538677 {-1
3 4.1128759 (-1) -6.7199626 (-1)
4 1.2515535 1.2854102
5 -4,9831594 1.202952
6 7.8968972 ~1.0023376 (1)
7 -5.1577087 1.951704 (1)
8 0 -1.4365914 (1)
1o

o~ 2
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Fig. 9. Execution time for Fortran IV computer program inplementa-
tion of proposed diffraction algorithm using an IBM System370/
model 168 machine. N =number of finger pairs in uniform transducer,
M =number of finger pairs in apodized transducer, and F=number of
frequency points to be calculated. Open squares represent some actual
computations.

where
Cy=2.93X% 10~°
So=—0.79601733
Py= —1.083445

Qo= —0.2053964.

The coefficients U, and T} are presented in Table IV. The
sine and cosine integrals S,(x) and C,(x) can be com-
puted using polynomial approximations also available in
[9).

This section is concluded with a few remarks concern-
ing the computer implementation of (A22) and (A23),
since the exact details of encoding will dramatically affect
the speed of execution. It should be noted that: 1) the
evaluation of S,(x) and C,(x) (sine and cosine integrals)
should not be performed in a separate subprogram in
order to reduce the number of sin(x) and cos(x) valua-
tions from two each to one each, 2) the two polynomials
in (A22) and (A23) should be evaluated using Horner’s
nested form for maximum speed and accuracy [11], and 3)
an optimizing compiler should be used for maximum
speed. The numerical algorithm proposed in this paper
was implemented in a Fortran IV computer program. The
execution time is illustrated in Fig. 9 as a function of the
product NMF, where N is the number of finger pairs in
the uniform transducer, M is the number of finger pairs in
the apodized transducer, and F is the number of
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frequency points to be computed. The calculations were
performed on an IBM System /370 Model 168 machine.
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Static Capacitance Calculations for a Surface
Acoustic Wave Interdigital Transducer
in Multilayered Media

ADRIAN VENEMA, JOZEF J. M. DEKKERS, anp R. F. HUMPHRYES

Abstract—The static capacitance of an interdigital structure in multi-
layered media has been calculated. Numerical results are given for a
surface acoustic wave interdigital transducer on an oxidized silicon sub-
strate with a piezoelectric overlay. The capacitance is derived in terms of
the layer thicknesses for zero and infinite substrate resistivity.

URFACE acoustic wave (SAW) generation and de-
tection on a nonpiezoelectric substrate such as silicon
necessitates a piezoelectric overlay [1]. Examples of com-
monly used overlay materials include cadmium sulphide
and zinc oxide. If it is intended to incorporate SAW
devices and electronic components monolithically on the
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same silicon slice, then for compatability with silicon
planar technology the silicon must be oxidized. In fact
this is an advantage because the silicon dioxide also acts
as an insulator between the interdigital transducer (IDT)
and the electrically conductive silicon, thus making such
monolithic integration possible. On the other hand, the
acoustic propagating medium is now further complicated
by the additional layer.

There are four possible transducer configurations [2] for
such a multilayered structure. This choice is halved when
it is deemed necessary to optimize for maximum electro-
mechanical coupling. The remaining two configurations
require the IDT to be embedded between the thermally
oxidized silicon substrate and the piezoelectric overlay.
Furthermore, one of these requires a metal electrode (in
the form of a platelet) to be depositied on the top of the
piezoelectric overlay immediately above the IDT. The
latter has advantages at low kh, values (k is SAW wave-
number, h, is piezoelectric layer thickness) where under
certain conditions considerable enhancement is obtain-
able. At higher kh, values the performances of the two
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