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A Numerical Technique for SAW Diffraction
Simulation

DAVID PENUNURI

.4bstrac-An efficient numerieal techfdque is presented for simulating
the effect of dtifraetion on the performance of snrface aconstic wave
(SAW) devices. A compnter code based on this technique accurately
predkts the performance of several “practical” bandpaw fiiters fabricated

on ST-cut qumta. Siiee the algorithm is f- au iterative design procedure
which minfmhm the frequency sidelok in the presence of diffraction is
now practical.

L INTRODUCTION

E

VEN AS the specifications for SAW devices become

more exacting, diffraction effects continue to plague

device design, particularly low sidelobe narrow bandwidth

filters. Diffraction begins to have deleterious effects as the

specified sidelobe suppression level surpasses 40 d13 in a

single filter device and is almost exclusively the source of

error at the 50-dB sidelobe level on ST-cut quartz.

Several approaches have been used to eliminate, or at

least reduce, diffraction effects. The discovery of mini-

mum diffraction cuts on bismuth germanium oxide (BGO)

and lithium tantalate (LiTaOJ [1], [2] has resulted in

perhaps the best “simple” bandpass filters, in the sense

that the experimental and theoretical (based on transver-

sal filter calculations) frequency responses are very close

[3]. By “simple” is meant a device consisting of one

apodized transducer and one unanodized transducer. Un-

fortunately, these substrate materials are neither tempera-

ture compensated nor inexpensive.

Another approach has been to avoid anodization in

filter design, instead, by making use of finger withdrawal

to achieve spectral weighting [4]. This technique avoids

very narrow finger overlaps which tend to be dominated

by end effects [5], and are subject to severe diffraction

errors. The disadvantage is that the transducers tend to

have many more finger pairs than those of conventionally

apodized transducers of the same fractional bandwidth.

Finally, these devices are ultimately subject to substantial

diffraction effects because, since the transducers are long

and substrate size is constrained, it is cliff icult to design

such transducers that are entirely within the near field or

far field,

The last approach has been to retain a “simple” filter

configuration, but correct the time sampling to com-

pensate for diffraction effects. Because of current photo-
lithographic constraints, it is generally not possible to
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accurately correct for phase errors, i.e., adjust the relative

finger pair positions with sufficient resolution. Conse-

quently, only amplitude correction has been investigated

in depth, and only to demonstrate a 40-dB sidelobe level

[6]. The disadvantages of this technique are that: 1) the

compensation can be done exactly at one frequency only,

e.g., the center frequency of the filter, because the diffrac-

tion pattern is in general a strong function of frequency,

thus frequency sidelobes are not exactly corrected; 2) the

diffraction phase errors (deviation from plane wave phase)

remain, and can cause significant departure from the ideal

response; and 3) after compensation for amplitude, it is

extremely expensive to compute the response of a practi-

cal filter (fractional bandwidth less than a few percent)

under the influence of diffraction in order to determine

the effect of phase error, Thus an efficient numerical

technique is required for the computation of a filter re-

sponse, taking into account the complete diffraction prob-

lem, Then it becomes possible to analyze a filter design

which has been derived by using the compensation tech-

niques available, for example, or optimize an initial design

by adjusting the anodization function and the center-to-

center spacing of the transducers. With such a numerical

algorithm, it becomes feasible to systematically adjust

each finger overlap in order to maximize sidelobe suppres-

sion for a given transducer aperture and center-to-center

spacing.

In this paper, such a numerical technique is presented

which, under the conditions that the interdigital trans-

ducer can be modeled as an ideal transversal filter (condi-

tions which are readily approached using ST-cut quartz

and double electrode transducers) and that the SAW wave

vector surface is parabolic (an assumption that is accurate

for most substrates), permits the fast computation of the

frequency response. No attempt is made to model any of

the electromechanical or external circuit effects which are

present in actual devices. In Section H the technique is

derived, and in Section III an analysis of several experi-

mental devices is presented.

II. DIFFRACTION FORMALISM

Following the formalism established by Szabo and

Slobodnik [7], we consider the response of a single an-

tenna in the diffraction field due to a single line source on

a half space. The aperture of the source is normalized to

unity and only those antennas of aperture less than or
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Fig. 1. Coordinate system for diffraction problem.

equal to unity are considered, as seen in Fig. 1. Note that

the vertical axis is in units of aperture and the horizontal

axis is in units of wavelength. The source is assumed to

consist of a constant amplitude distribution, Then the

amplitude u (L,y) at any point (L,y), L >0, Iy I < 1/2, rela-

tive to a plane wave, is given by
ne

where

Re ZJ(L,Y) = Ci(@ ) – Ci(+) (1)

hn u(Q)= Si(~) – Si(fl ) (2)

:!89
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Fig. 2. “Simple” filter configuration.
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In order to facilitate the numerical computation, two

w functions are defined as

(n)

x Si(t) ~t

~=m(y+l/2)’ ~2
Sii(x) = J ~ (14)

‘3) which, for brevity, we call the second Fresnel integrals.Il+yl L’
Then the total response at the antenna is rewritten

JY-1/2)2 A’

11+’yl L
(4) -& Re U(L, Y) =Cii(O ) – Cii(*) (15)

y is the slope of the power flow angle, J is the actual

maximum aperture in wavelengths, and L is the source-
+ Im U(L, Y)= Sii(Y)– Sii(0). (16)

to-antenna separation in wavelengths. Re and Im signifY These expressions can be further simplified so that tlhe

the real and imaginary parts, respectively, of a complex responses of the many finger pair filters can be written
number. The functions Ci(x) and Si(x) are the Fresnel compactly we define

integrals usually defined as
Eii(x) = Cii(x) +j Sii(x) (17)

x Cos (1)
Ci(x) = & ~ ~ ‘t (5) and using the fact that

Cii( – x) = – Cii(x) (18)

Si(x) = ~
1

~ sin (t)
— dt.

Govl

(6) and

Sii( – x) = Sii(x) (ls~)
Then the total response of an antenna of width 2 Y

centered on the beam axis at L is U(L, Y) where
we write the total response as

~U(L, Y)= Eii(–V)– Eii(–@).
U(L, Y) = ~_yYu(L,y) C@ (7)

(20)

We assume that each finger pair of a SAW transducer is
which can be written as an independent line source. Then the response of a “sim-

J

e Ci(t) pie” filter consisting of N uniform aperture sources and M

Re U(L, Y)=cr — dt (8) variable aperture antennas as in Fig. 2 can be written as
*V7

/

e Si(t) ~t U= ~ “n ~ “rzm%(Eii( – *rim) – Eii( – %n))e ‘~2”pLnm
ImU(L, Y)=–a — (9) ~=1 ~=1

*ti (21)

wherewhere

‘=(Y+:’2)’ (lo) (22!)
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TABLE I
COMPARISON OF NUMBER OF OPERATIONS REQUIRED TO COMPUTS

~RESNSL INTEGRAL AND SECOND FRSSNSL INTEGRAL

Function sin(x) Cos(x) x + d
r 4

IFresnel Int. 1 1 22 26 1

Second Fresnel
Int. 1 1 43 45 1

I I

‘nm=(y~i:”)’
anm=(+”%r2c

(23)

(24)

N and M are the number of finger pairs in the uniform

and apodized aperture transducers, respectively, and “n

and am are the signs ( + or –) of the nth and mth finger

pairs of the uniform and apodized transducers, respec-

tively.

L..= LO+~-n+m. (25)
L

LO is the center-to-center spacing between transducers in

wavelengths at the fundamental frequency, xto is the aper-

ture in wavelengths at the fundamental frequency, and

p =f/fo, where f is the frequency and ~0 is the fundamen-
tal frequency.

It is shown in the Appendix that Cii(x) and Sii(x), or

equivalently, Eii(x), can be computed simultaneously

using polynomial approximations. By comparison, a

“brute force” computation [8] would require that each

finger pair of the apodized transducer be divided into a

large number of small sections. The field at the center of

each section would be computed and all such contribu-

tions would be summed to yield the response of a finger

pair. The fact that the fields must be evaluated at many

points, e.g., P, along the aperture of a finger pair, implies

that the Fresnel integrals must be computed P times.

Using the algorithm proposed in this paper, the second

Fresnel integrals must be computed only once for the

response of the finger pair in question. Thus the relative

advantage of the new method is obvious if the number of

similar operations required to compute the Fresnel in-

tegrals and the second Fresnel integrals are compared as

in Table L The algorithms are seen to be quite similar in

terms of computational effort. Based on reasonable esti-

mates of the relative time required to perform the various

operations and compute the sine, cosine, and square-root

functions, a single evaluation of the second Fresnel in-
tegral algorithm requires at most 50-percent more com-

putation than a single evaluation of the Fresnel integral

algorithm. Thus it is concluded that the new method is

more efficient by essentially a factor of P/1.5 because the

numerical quadrature for each finger pair is eliminated.

This savings is significant since, for a reasonable ap-

TABLE II
BANDPASS FILTER SPECIFICATIONS

Center Center-To-
Fr~~&ncy Max. Apehure Center

Filter (so) Spacing (10) NM

H 65.8 41 330.0 35 160

#z 28.2 30 330.0 64 100

+3 65. S 90 291.0 26 120

*4 121.3 50 372.7 65 192

proximation of about three significant digits in the

quadrature along the aperture, we must have 20< P <50.

Thus (21) is a fast computational algorithm for computing

the filter response in the presence of diffraction effects.

III. CO~ARISON OF T~ORY AND EXPERINIENT

Four bandpass filters were fabricated on ST-cut quartz

with the specifications seen in Table 11. The table shows

the center frequency at the fundamental, the maximum

aperture in fundamental wavelengths, the center-to-center

spacing of the transducers, and the number of finger pairs

in each transducer. All filters consisted of interdigital

transducersowith double electrodes of aluminum metalliza-

tion 1000 A thick. The apodized transducers contained

dummy electrodes starting two wavelengths from the end

of each active electrode. All frequency response measure-

ments were made in a 50-0 system with no matching

circuits of any kind. The transducer anodization for each

filter was based on a simple summation of plane waves or

discrete Fourier transform analysis with no modification.

For the purposes of this paper, filters 1 and 3 were studied

at their fundamental frequency only. Filters 2 and 4 were

studied both at the fundamental and at the third

harmonic. The table shows that these devices are typical

of IF filters which might be encountered in practical

applications, with 100–200 finger pairs in the apodized

transducer and fractional bandwidths in the range 0.5 –5

percent.

Figs. 3 –8 show the frequency response for each filter

which was expected on the basis of a plane wave analysis

(solid line), the experimental response (dashed line), and

the calculated response, including diffraction using the

algorithm described above with y =0.378 (open squares).

The figures show only the high frequency side of the

bandpass since the low frequency side is similar. Many

more points were computed than are indicated by the

number of open squares on each figure. The experimental

response is considerably degraded from the ideal response

for all filters. The sidelobes are higher by as much as 30

dB and are “smeared” together by diffraction. Further-

more, in all cases except for filter 2 at the fundamental,

the experimental response was accurately predicted

(within 2 dB) solely by including the effect of diffraction.

The uniform transducer for filter 2 contained sections of

phase-reversed finger pairs. As has been discussed by

Smith [9] such devices tend to exhibit frequency responses
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Fig. 3. Frequency response of filter 1, based on summation of plane
waves (solid line), including diffraction using new technique (open
squares) and experiment (dashed line).
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Fig. 4. Frequency response of filter 2 at the fundamental.
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Fig. 5. Frequency response of filter 2 at the third harmonic.

which are skewed relative to the center frequency. This

effect was observed for filter2 and resulted inasmuch as

a 7-dB deviation between the experimental response and

that predicted using the diffraction analysis, although
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Fig. 6. Frequency response of filter3.
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Fig. 8. Frequency response of filter 4atthe third harmonic.

there was qualitative agreement. When the experimental

response was averaged about center frequency in order to

eliminate the bandpass skewing, the disagreement was

reduced to less than 2 dB.
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IV. CONCLUSION

A numerical technique was presented which permits the

fast computation of the frequency response of SAW de-

vices under the assumption that an interdigital transducer

can be modeled as an ideal transversal filter and that the

diffraction is parabolic. The technique reduces the com-

putational effort by a large factor (20-50) relative to a

typical “brute force” method.

The numerical code induced by the algorithm was used

to accurately predict the frequency response of several

bandpass filters, The filters were “practical” in the sense

that the transducers consisted of a large number of finger

pairs (100–200). The experimental and theoretical

frequency responses were typically within 2 dB. These

results illustrate the fact that the major source of error on

ST-quartz is diffraction.

Finally, we note that since the new method is very

efficient, a true optimizing design procedure is now practi-

cal. It is now possible to analyze an initial design very

quickly, systematically modify the finger overlaps, and

reanalyze. Thus, as an example, it should be possible to

iteratively search for a maximum in the sidelobe suppres-

sion level.

TABLE 111
COEFFICIENTS OF Cii(x) AND Sii(x) FOR mm RANGE O< x < 4;

PnsmsIs CONTAIN BASE 10 EXFONBNT

m cm dm

t
o
1
2
3
4

z

-;.:;;;;;; [-:]
7;3877172 (14)

-1.2174946 (-5)
1.2894760 (-7)

-9.2188446 (-10)
3.9229499 (-12)

1.3298075
-4.7492775

1.0072562
-1.3157316

1.1225331
5.5647873

0

(-1)
(-3)
(-4)
(-6)
(-8)
(-11)

I I

x Ci(t)
Cii(x) = cii(4) + ~ ~ dt

and

Sii(x) = Sii(4) + ~x~ dt.

(A5)

(A6)
‘4 Vt

The first term of the RHS for both functions is ob-

tained by evaluating the approximations obtained above

for O< x <4. In order to evaluate the remaining integral

we make use of the approximations

V. APPENDIX — {cos(x)P(x)+sin(x) Q(x)} (A7)Ci(x) = ~ + ~

Computation of Eii(x)

The numerical evaluation of Eii(x) as defined in (13)

and (14) is based on a polynomial approximation for the

Fresnel integrals, Ci(x) and Si(x) [10]. By substituting

these approximations into the integrand of (13) and (14),

it becomes possible to evaluate the integrals exactly. This

procedure leads to a polynomial approximation for Cii(x)

and Sii(x). The numerical approximation of the Fresnel

integrals in [10] is presented for two ranges of the argu-

ment, Ixl <4 and Ixl >4. Therefore, the evaluation of

Cii(x) and Sii(x) is considered separately over similar

ranges except that only x >0 need be considered,

In the range O< x <4, the Fresnel integrals are ap-

proximated by

—{sin(x)P(x)-cos (x) Q(x)} (A8)Si(x) = * + &

with

and

(A9)

(A1O)

The coefficients am and b~ are tabulated in [10]. Sub-

stituting (A7)–(A1O) into (A5) and (A6) and performing

the integration yields

Ci(x) = W ~ c.x2” (Al)
Cii(x) = Cii(4) + W – 2

~=o
+2 ~ 4~b~{C~+l(x)–C~+](4)}

and ~=o

Si(x) = ti ~ d~x2”+ * (A2) +2~*04~a~{S~+1(x) –S~+1(4)} (Al 1)
m=O

where the coefficients cm and d~ are tabulated in [9]. with a similar result for Sii(x), where we have defined

Therefore

Cii(x) = ~ c~x2m+ 1 (A3)
~=o

and

x Cos(t)
Cm(x)=/m~ dt (A12)

and
x sin(t)

% (x)= fm ~ dt. (A13)
Sii(x) = ~ d~x2m+2 (A4)

~=o It can be shown via integration by parts that the functions

where CL = cJ(2m -!- 1) and d’ = dm/(2m + 2). The new
Cm(x) and f$’~(x) satisfy the recursive relations

coefficients c: and d; appear inWTable III.

In the rarwe x >4. we write cm+,(~)=-~-~ (A14)
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and

sin(x) + cm (x)
s.+,(x)=”— — (A15)

mm m

for m >1. The starting functions are

and

x sin(t) ~
~l(x) = ~m y dt = Si(x) (A17)

which are the well-known cosine and sine integrals, Alge-

braic manipulation of the expression for Cii(x) in (Al 1)

and the similar result for Sii(x) yields the simplified ex-

pressions

8

Cii(x)=CO+fi + ~ {b~C~+l(x)+a~S~ +l(x)}
~=o

(A18)

and

Sii(x)=SO+fi + ~ {b#S~+l(x)–a~C~ +l(x)}
m=O

(A19)

where

a~ = 2(4mam), m= 0,1, ”. .,7

a&=O

and

b~ = 2(4mbm), m= 0,1, ”.”,8.

COand& are constants.

In order to speed up the algorithm defined by

(A14)-(A19), we eliminate the recursive computation in

(A14) and (A15) by noting that we can write

cm(x)= Cmsl(x) + Dmcl(x)

Sm(x) =Ams,(x) + %CI(’)

s a~k
+ sin(x) ~ s ~ (Ml)y +Cos(x) ~

k-l X k-l x

where Am, B~, cm, D~, %0 b~k, cd, and d~k are con-
stants that are readily determined from (A14) and (Al 5).

Substitution of (A20) and (A21) into (A18) and (A19) and

collecting the sums yields the final result

Cii(x) = Co+ fi – POS1(x) + QOCI(x)

Sii(x) = So+ fi + QOS1(x) + POC1(x)

TABLE IV
COJWFICIENRlOFCii(x) AND Sii(x) FOR ~ ~~E ~ >4;

PARENTHESIS CONTAIN BASE 10 EXPONENT

k ‘k ‘k

-1 .8544377 (-1
; -4,850367 (-1 1 -%% l:!{
3 4.1128759 (-1) -6,7199626 (-1 )
4 1.2515535 1.2854102
5 -4.9831594 1.202952
6 7. S$6S972

[
-1.0023376 1)

7 -5.1577087 1.951704 1)
s o -1.4365914 (1)

lug ln~ 10= ID= ID’

NXMXF

Fig. 9. Execution time for Fortran IV computer program implementa-
tion of proposed diffraction algorithm using an IBM System370/
model 168 machine. N= number of finger pairs in uniform transducer,
M =number of finger pairs in apodized transducer, and F=number of
frequency points to be calculated. Open squares represent some actual
computations.

where

CO=2.93 X 10-9

so=–0.79601733

PO= – 1,083445

Q,= -0,2053964.

The coefficients f/k and Tk are presented in Table IV. The

sine and cosine integrals Sl(x) and Cl(x) can be com-

puted using polynomial approximations also available in

[9].

This section is concluded with a few remarks concern-

ing the computer implementation of (A22) and (A23),

since the exact details of encoding will dramatically affect

the speed of execution. It should be noted that: 1) the

evaluation of Sl(x) and Cl(x) (sine and cosine integrals)

should not be performed in a separate subprogram in

order to reduce the number of sin(x) and COS(X) valua-

tions from two each to one each, 2) the two polynomials

in (A22) and (A23) should be evaluated using Homer’s

nested form for maximum speed and accuracy [11], and 3)

an optimizing compiler should be used for maximum

speed. The numerical algorithm proposed in this paper

was implemented in a Fortran IV computer program. The

execution time is illustrated in Fig. 9 as a function of the

product NMF, where N is the number of finger pairs in

the uniform transducer, M is the number of finger pairs in

the apodized transducer, and F is the number of
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frequency points to be computed. The calculations were

performed on an IBM System/370 Model 168 machine.
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Static Capacitance Calculations for a Surface
Acoustic Wave Interdigital Transducer

in Multilayered Media

ADRIAN VENEMA, JOZEF J. M. DEKKERS, AND R. F, HUMPHRYES

Abstract—The static capacitance of an interdigitaf structure in muMi-
Iayered media has been calculated. Numericaf results are given for a
surface ac4mstic wave interdigitat tmmsducer on an oxidized sificon sub-
strate with a piezoekctric overlay. The capacitance is derived in terms of
the layer thicknesses for zero and infiite substrate resistivity.

SURFACE acoustic wave (SAW) generation and de-

tection on a nonpiezoelectric substrate such as silicon

necessitates a piezoelectric overlay [1]. Examples of com-

monly used overlay materials include cadmium sulphide

and zinc oxide. If it is intended to incorporate SAW

devices and electronic components monolithically on the
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same silicon slice, then for comparability with silicon

planar technology the silicon must be oxidized. In fact
this is an advantage because the silicon dioxide also acts

as an insulator between the interdigital transducer (IDT)

and the electrically conductive silicon, thus making such

monolithic integration possible. On the other hand, the

acoustic propagating medium is now further complicated

by the additional layer.

There are four possible transducer configurations [2] for

such a multilayered structure. This choice is halved when

it is deemed necessary to optimize for maximum electro-

mechanical ccupling. The remaining two configurations

require the IDT to be embedded between the thermally

oxidized siliccln substrate and the piezoelectric overlay.
Furthermore, one of these requires a metal electrode (in

the form of a platelet) to be deposited on the top of the

piezoelectric cwerlay immediately above the IDT. The

latter has advantages at low khz values (k is SAW wave-

number, hz is piezoelectric layer thickness) where under

certain conditions considerable enhancement is obtain-

able, At higher khz values the performances of the two
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